

# Cost-effective solutions for river water quality improvement in Eindhoven supported by sewer-WWTP-river integrated modeling

<u>Lorenzo Benedetti</u><sup>1</sup>, J. Langeveld<sup>2</sup>, J.J.M. de Klein<sup>3</sup>, I. Nopens<sup>4</sup>, A. van Nieuwenhuijzen<sup>5</sup>, T. Flameling<sup>6</sup>, O. van Zanten<sup>6</sup> and S. Weijers<sup>6</sup>

- <sup>1</sup> WATERWAYS srl, Via del Ferrone 88, 50023 Impruneta (FI), Italy
- <sup>2</sup> Delft University of Technology, Stevinweg 1, 2624 CN Delft, Netherlands
- <sup>3</sup> Aquatic Ecology and Waterquality Management Group, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen, Netherlands
- <sup>4</sup> BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, 9000 Gent, Belgium
- <sup>5</sup> Witteveen+Bos, PO Box 233, NL-7400 AE Deventer, Netherlands
- <sup>6</sup> Waterschap De Dommel, 5280 Boxtel, Netherlands

- The Kallisto project
- System definition
- Project approach
- Selection of measures
- -Scenario analysis
- Conclusions







gemeente Eindhoven















WATERWAYS









Clean: Improving the receiving surface water quality to comply with the national legislation and the EU Water Framework Directive

Smart: Controlling storm water and wastewater flows by cost-effective control, buffering and treatment measures in the Integrated Urban Water System



Together: Involving different stakeholders in the water chain across the boundaries of responsibilities including municipalities, the waterboard, knowledge institutes and STOWA (dissemination)



# The Eindhoven system



Complex combined wastewater system

Large area with severe impact on vulnerable surface water

10 municipalities
750,000 PE WWTP
>200 CSOs

### The Eindhoven WWTP





# The Dommel River: ecological quality





### Dry weather





#### Rain weather





#### Storm weather





#### Storm weather + overflow





#### Water Quality Policy / WFD



#### Water Quality Policy / WFD



# Modeling (after monitoring)

sewer model (InfoWorks) WWTP model (Duflow)

1. model development integrated model (WEST) cost model (WEST)





- One single model:
  - Mass and information flows (impact on receiving water, RTC)
- Speed:
  - Many scenarios
  - Long-term simulation (10y in 2h)
  - Monte Carlo for UA/SA



# Integrated model results: DO at river section DS of WWTP



# Modeling





# GSA: operational parameters ranking





# Modeling



| Measure                                                                     | Field of application/objective                                                               |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| RTC in the sewer system                                                     | Minimisation of DO dips and/or NH <sub>4</sub> peaks in river with available system capacity |  |  |  |  |  |  |  |  |  |  |
| DAF, fine screens, lamella settler, fuzzy                                   | Pre-treatment of wastewater during DWF                                                       |  |  |  |  |  |  |  |  |  |  |
| filter                                                                      | Treatment of WWF                                                                             |  |  |  |  |  |  |  |  |  |  |
| CSO storage                                                                 | Reduction of CSO emissions                                                                   |  |  |  |  |  |  |  |  |  |  |
| Dry buffers at WWTP inlet                                                   | Peak load shaving to reduce NH <sub>4</sub> concentration peaks in effluent                  |  |  |  |  |  |  |  |  |  |  |
| River aeration                                                              | Reduce DO dips in river                                                                      |  |  |  |  |  |  |  |  |  |  |
| Effluent aeration                                                           | Reduce DO dips in river due to WWTP effluent                                                 |  |  |  |  |  |  |  |  |  |  |
| WWTP: additional aeration capacity, increase of MLSS and of aeration volume | Enhance nitrification process to reduce NH <sub>4</sub> peak concentrations in river         |  |  |  |  |  |  |  |  |  |  |
| Equalisation pond/wetland                                                   | Equalisation of WWTP effluent to reduce NH <sub>4</sub> peak concentrations to the river     |  |  |  |  |  |  |  |  |  |  |
| Increase interceptor/pumping capacities                                     | Reduce DO dips in river                                                                      |  |  |  |  |  |  |  |  |  |  |
| Increase hydraulic capacity of biological treatment at WWTP                 | reduce NH <sub>4</sub> peak concentrations and DO dips in river                              |  |  |  |  |  |  |  |  |  |  |
| Sand filter for treatment of WWTP effluent                                  | Reduce N <sub>total</sub> and P <sub>total</sub> in effluent                                 |  |  |  |  |  |  |  |  |  |  |



#### Scenario analysis

- 10-year dynamic simulations
- Approx. 40 different scenarios tested
- Evaluation
  - Ecological framework based on concentration-duration-frequency curves for sensitive species
  - Focus on DO and NH<sub>4</sub>
  - Costs (CAPEX and OPEX)



# Scenario analysis: costs

# Costs of measures to reduce DO depletion and achieve basic DO levels

| Measure            | Investment   | CAPEX       | OPEX      |
|--------------------|--------------|-------------|-----------|
| Additional storage | € 79,800,000 | € 3,830,000 | € 79,500  |
| River aeration     | € 1,040,000  | € 96,700    | € 117,000 |



# Scenario analysis: costs

#### Reference scenario:

- conventional methods of solving water quality issues (uncoupling of paved area, building sewer storage facilities at CSOs)
- yearly cost (CAPEX+OPEX) approximately € 15 million



# Scenario analysis: costs

| Scenario                          | Α                                                                                                                                                                      | В                 | С                 |  |  |  |  |  |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--|--|--|--|--|--|--|--|--|
| Measure in all scenarios          | River aeration + effluent aeration Sand filter for effluent filtration RTC aiming at reducing NH <sub>4</sub> concentration peaks Additional aeration capacity at WWTP |                   |                   |  |  |  |  |  |  |  |  |  |
| Measures                          | dry storage                                                                                                                                                            | wetland           | DAF pre-treatment |  |  |  |  |  |  |  |  |  |
| Investment                        | € 160,140.000                                                                                                                                                          | € 90,410.000      | € 36,780.000      |  |  |  |  |  |  |  |  |  |
| CAPEX                             | € 11,295,000/year                                                                                                                                                      | € 8,328,000/year  | € 3,052,000/year  |  |  |  |  |  |  |  |  |  |
| OPEX                              | € 3,670,00/year                                                                                                                                                        | € 3,194,000/year  | € 4,641,000/year  |  |  |  |  |  |  |  |  |  |
| Total annual costs (CAPEX + OPEX) | € 14,965,000/year                                                                                                                                                      | € 11,522,000/year | € 7,693,000/year  |  |  |  |  |  |  |  |  |  |



# Scenario analysis: water quality

#### current situation

WWTP



| NH <sub>4</sub> | D   | uration | of the e | vent   |       | S06 | <br>66 |     |     | S(          | 000    |      |     |     | S01 | 7    |      | S010 |   |     |     |      |     |     | SOC  | <br>)8 |      | S031 |     |      |      |      |  |
|-----------------|-----|---------|----------|--------|-------|-----|--------|-----|-----|-------------|--------|------|-----|-----|-----|------|------|------|---|-----|-----|------|-----|-----|------|--------|------|------|-----|------|------|------|--|
|                 |     | 1 - 5 h | 6 - 24 h | > 24 h |       |     |        |     |     |             |        |      |     |     |     |      |      |      |   |     |     |      |     |     |      |        |      |      |     |      |      |      |  |
| Tolerated       | 12  | 1.5     | 0.7      | 0.3    | 1 2   | 0.6 | 6.1    | 2.8 | 1 1 | <b>1</b> 0. | 3 1.6  | 0.2  | 1 4 | 4 2 | 0.6 | 18.7 | 6.5  | 1 2  | 2 | 1.4 | 8.1 | 9.5  | 4 5 | 5 5 | 22.6 | 77.4   | 38.6 | 2    | 5 5 | 11.7 | 60.2 | 45.6 |  |
| frequency       | 4   | 2       | 1.2      | 0.5    | 1 1   | 0.0 | 1.6    | 0.9 | 1 1 | <b>1</b> 0. | 0.1    | 0.1  | 1 2 | 2 3 | 0.0 | 2.4  | 4.3  | 1 1  | 2 | 0.8 | 1.7 | 3.3  | 5 5 | 5 5 | 31.0 | 65.1   | 40.1 | 5    | 5 5 | 12.9 | 54.4 | 36.8 |  |
| per year        | 1   | 2.5     | 1.5      | 0.7    | 1 2   | 0.0 | 0.7    | 0.6 | 1 1 | <b>1</b> 0. | 0.0    | 0.1  | 1 2 | 2 4 | 0.0 | 0.7  | 1.8  | 1 2  | 4 | 0.0 | 1.0 | 1.5  | 5 5 | 5 5 | 32.5 | 51.0   | 16.9 | 5    | 5 5 | 11.1 | 41.3 | 18.9 |  |
|                 | 0.2 | 4.5     | 3        | 1.5    | 1 1   | 0.0 | 0.0    | 0.1 | 1 1 | <b>1</b> 0. | 0.0    | 0.1  | 1 1 | 1 4 | 0.0 | 0.0  | 0.4  | 1 1  | 1 | 0.0 | 0.0 | 0.1  | 5 5 | 5 5 | 4.3  | 2.2    | 0.6  | 1    | 5 4 | 0.0  | 0.7  | 0.3  |  |
|                 |     |         |          |        |       |     |        |     |     |             |        |      |     |     |     |      |      |      |   |     |     |      |     |     |      |        |      |      |     |      |      |      |  |
| DO critical     | Di  | uration | of the e | vent   |       |     |        |     |     |             |        |      |     |     |     |      |      |      |   |     |     |      |     |     |      |        |      |      |     |      |      |      |  |
|                 |     | 1 - 5 h | 6 - 24 h | > 24 h |       |     |        |     |     |             |        |      |     |     |     |      |      |      |   |     |     |      |     |     |      |        |      |      |     |      |      |      |  |
| Tolerated       | 12  | 5.5     | 6        | 7      | 1 1   | 0.6 | 4.8    | 4.0 | 1 4 | 4 2.        | 0 16.2 | 22.0 | 1 3 | 3 3 | 4.8 | 13.4 | 12.6 | 1 2  | 2 | 2.2 | 9.0 | 11.8 | 2   | 5 5 | 6.2  | 35.3   | 28.3 | 1    | 5 5 | 4.1  | 38.6 | 30.7 |  |
| frequency       | 4   | 4       | 5.5      | 6      | 1 2   | 0.2 | 2.2    | 0.7 | 1 5 | <b>4</b> 0. | 2 8.7  | 6.0  | 2 5 | 5 4 | 2.3 | 9.5  | 5.7  | 1 3  | 3 | 0.9 | 4.8 | 4.1  | 3 5 | 5 5 | 4.2  | 36.0   | 26.3 | 1    | 5 5 | 1.0  | 23.9 | 18.8 |  |
| per year        | 1   | 3       | 4.5      | 5.5    | 1 2 : | 0.1 | 0.9    | 0.6 | 1 5 | <b>5</b> 0. | 0 2.1  | 2.6  | 2 5 | 5 5 | 0.7 | 5.0  | 3.6  | 1 4  | 5 | 0.2 | 1.3 | 2.5  | 4 5 | 5 5 | 1.5  | 20.5   | 19.7 | 1    | 5 5 | 0.3  | 9.0  | 11.6 |  |
|                 | 0.2 | 1.5     | 2        | 3      | 1 1   | 0.0 | 0.0    | 0.1 | 1 1 | <b>1</b> 0. | 0.0    | 0.0  | 1 1 | 1 1 | 0.0 | 0.0  | 0.1  | 1 5  | 5 | 0.0 | 0.5 | 0.9  | 1 5 | 5 5 | 0.0  | 0.7    | 2.2  | 1    | 4 5 | 0.1  | 0.4  | 1.5  |  |
|                 |     |         |          |        |       |     |        |     |     |             |        |      |     |     |     |      |      |      |   |     |     |      |     |     |      |        |      |      |     |      |      |      |  |
| DO basic        | D   | uration | of the e | vent   |       |     |        |     |     |             |        |      |     |     |     |      |      |      |   |     |     |      |     |     |      |        |      |      |     |      |      |      |  |
|                 |     | 1 - 5 h | 6 - 24 h | > 24 h |       |     |        |     |     |             |        |      |     |     |     |      |      |      |   |     |     |      |     |     |      |        |      |      |     |      |      |      |  |
| Tolerated       | 12  | 3       | 3.5      | 4      | 1 1   | 0.1 | 0.2    | 0.1 | 1 1 | <b>1</b> 0. | 0.3    | 0.2  | 1 1 | 1 1 | 0.7 | 1.5  | 0.6  | 1 1  | 1 | 0.2 | 0.5 | 1.6  | 1 2 | 2 2 | 1.5  | 6.7    | 6.3  | 1    | 1 1 | 0.3  | 1.6  | 2.2  |  |
| frequency       | 4   | 2.5     | 3        | 3.5    | 1 1   | 0.0 | 0.0    | 0.1 | 1 1 | <b>1</b> 0. | 0.0    | 0.1  | 1 : | 1 1 | 0.0 | 0.3  | 0.2  | 1 1  | 1 | 0.2 | 1.1 | 1.5  | 1 2 | 2 2 | 0.3  | 2.4    | 3.5  | 1    | 1 1 | 0.2  | 0.8  | 1.7  |  |
| per year        | 1   | 2       | 2.5      | 3      | 1 1   | 0.0 | 0.0    | 0.1 | 1 1 | <b>1</b> 0. | 0.0    | 0.0  | 1 1 | 1 1 | 0.1 | 0.2  | 0.1  | 1 2  | 2 | 0.1 | 1.0 | 0.9  | 1 4 | 1 5 | 0.3  | 1.4    | 2.2  | 1    | 3 4 | 0.0  | 1.1  | 1.5  |  |
|                 | 0.2 | 1       | 1.5      | 2      | 1 1   | 0.0 | 0.0    | 0.0 | 1 1 | <b>1</b> 0. | 0.0    | 0.0  | 1 : | 1 1 | 0.0 | 0.0  | 0.1  | 1 4  | 5 | 0.1 | 0.4 | 0.5  | 1 5 | 5 5 | 0.1  | 0.6    | 1.1  | 1    | 4 4 | 0.0  | 0.3  | 0.3  |  |



# Scenario analysis: water quality

scenario C (RTC + riv.aer. + DAF)

WWTP

| NH <sub>4</sub> | Duration of the event |         |          |        |   |     | <b>S06</b> | 6   |     |   | S000 |     |     |     |   | S017 |     |      |     |   |     | S01 | LO  |      |   |     | SO  | 80  |     | S031 |     |     |     |     |  |
|-----------------|-----------------------|---------|----------|--------|---|-----|------------|-----|-----|---|------|-----|-----|-----|---|------|-----|------|-----|---|-----|-----|-----|------|---|-----|-----|-----|-----|------|-----|-----|-----|-----|--|
|                 |                       | 1 - 5 h | 6 - 24 h | > 24 h |   |     |            |     |     |   |      |     |     |     |   |      |     |      |     |   |     |     |     |      |   |     |     |     |     |      |     |     |     |     |  |
| Tolerated       | 12                    | 1.5     | 0.7      | 0.3    | 1 | 2 1 | 0.6        | 6.1 | 2.8 | 1 | 1 1  | 0.3 | 1.6 | 0.2 | 1 | 4 2  | 0.4 | 14.8 | 6.8 | 1 | 2 2 | 1.9 | 7.2 | 9.4  | 1 | 2 2 | 3.2 | 8.0 | 8.1 | 1    | 1 2 | 0.7 | 6.0 | 6.8 |  |
| frequency       | 4                     | 2       | 1.2      | 0.5    | 1 | 1 1 | 0.0        | 1.6 | 0.9 | 1 | 1 1  | 0.0 | 0.1 | 0.1 | 1 | 1 3  | 0.0 | 1.4  | 4.6 | 1 | 1 2 | 0.9 | 1.8 | 3.4  | 1 | 2 1 | 0.4 | 2.1 | 0.7 | 1    | 1 1 | 0.0 | 1.3 | 0.7 |  |
| per year        | 1                     | 2.5     | 1.5      | 0.7    | 1 | 2 2 | 0.0        | 0.7 | 0.6 | 1 | 1 1  | 0.0 | 0.0 | 0.1 | 1 | 1 4  | 0.0 | 0.5  | 1.9 | 1 | 2 4 | 0.0 | 0.9 | 1.4  | 1 | 1 1 | 0.0 | 0.3 | 0.2 | 1    | 1 1 | 0.0 | 0.2 | 0.1 |  |
|                 | 0.2                   | 4.5     | 3        | 1.5    | 1 | 1 1 | 0.0        | 0.0 | 0.1 | 1 | 1 1  | 0.0 | 0.0 | 0.1 | 1 | 1 4  | 0.0 | 0.0  | 0.3 | 1 | 1 1 | 0.0 | 0.0 | 0.1  | 1 | 1 1 | 0.0 | 0.0 | 0.1 | 1    | 1 1 | 0.0 | 0.0 | 0.1 |  |
|                 |                       |         |          |        |   |     |            |     |     |   |      |     |     |     |   |      |     |      |     |   |     |     |     |      |   |     |     |     |     |      |     |     |     |     |  |
| DO critical     | D                     | uration | of the e | vent   |   |     |            |     |     |   |      |     |     |     |   |      |     |      |     |   |     |     |     |      |   |     |     |     |     |      |     |     |     |     |  |
|                 |                       | 1 - 5 h | 6 - 24 h | > 24 h |   |     |            |     |     |   |      |     |     |     |   |      |     |      |     |   |     |     |     |      |   |     |     |     |     |      |     |     |     |     |  |
| Tolerated       | 12                    | 5.5     | 6        | 7      | 1 | 1 1 | 0.3        | 4.2 | 3.9 | 1 | 1 2  | 0.0 | 0.0 | 9.8 | 1 | 2 2  | 0.0 | 8.0  | 8.4 | 1 | 1 2 | 0.0 | 0.0 | 10.5 | 1 | 1 1 | 0.0 | 0.0 | 0.9 | 1    | 1 2 | 0.0 | 0.1 | 8.0 |  |
| frequency       | 4                     | 4       | 5.5      | 6      | 1 | 1 1 | 0.1        | 2.0 | 0.7 | 1 | 1 1  | 0.0 | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0  | 1.4 | 1 | 1 1 | 0.0 | 0.0 | 0.0  | 1 | 1 1 | 0.0 | 0.0 | 0.0 | 1    | 1 1 | 0.0 | 0.0 | 0.1 |  |
| per year        | 1                     | 3       | 4.5      | 5.5    | 1 | 1 1 | 0.0        | 0.3 | 0.2 | 1 | 1 1  | 0.0 | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0  | 0.0 | 1 | 1 1 | 0.0 | 0.0 | 0.0  | 1 | 1 1 | 0.0 | 0.0 | 0.0 | 1    | 1 1 | 0.0 | 0.0 | 0.0 |  |
|                 | 0.2                   | 1.5     | 2        | 3      | 1 | 1 1 | 0.0        | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0  | 0.0 | 1 | 1 1 | 0.0 | 0.0 | 0.0  | 1 | 1 1 | 0.0 | 0.0 | 0.0 | 1    | 1 1 | 0.0 | 0.0 | 0.0 |  |
|                 |                       |         |          |        |   |     |            |     |     |   |      |     |     |     |   |      |     |      |     |   |     |     |     |      |   |     |     |     |     |      |     |     |     |     |  |
| DO basic        | D                     | uration | of the e | vent   |   |     |            |     |     |   |      |     |     |     |   |      |     |      |     |   |     |     |     |      |   |     |     |     |     |      |     |     |     |     |  |
|                 |                       | 1 - 5 h | 6 - 24 h | > 24 h |   |     |            |     |     |   |      |     |     |     |   |      |     |      |     |   |     |     |     |      |   |     |     |     |     |      |     |     |     |     |  |
| Tolerated       | 12                    | 3       | 3.5      | 4      | 1 | 1 1 | 0.0        | 0.0 | 0.1 | 1 | 1 1  | 0.0 | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0  | 0.0 | 1 | 1 1 | 0.0 | 0.0 | 0.0  | 1 | 1 1 | 0.0 | 0.0 | 0.0 | 1    | 1 1 | 0.0 | 0.0 | 0.0 |  |
| frequency       | 4                     | 2.5     | 3        | 3.5    | 1 | 1 1 | 0.0        | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0  | 0.0 | 1 | 1 1 | 0.0 | 0.0 | 0.0  | 1 | 1 1 | 0.0 | 0.0 | 0.0 | 1    | 1 1 | 0.0 | 0.0 | 0.0 |  |
| per year        | 1                     | 2       | 2.5      | 3      | 1 | 1 1 | 0.0        | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0  | 0.0 | 1 | 1 1 | 0.0 | 0.0 | 0.0  | 1 | 1 1 | 0.0 | 0.0 | 0.0 | 1    | 1 1 | 0.0 | 0.0 | 0.0 |  |
|                 | 0.2                   | 1       | 1.5      | 2      | 1 | 1 1 | 0.0        | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0 | 0.0 | 1 | 1 1  | 0.0 | 0.0  | 0.0 | 1 | 1 1 | 0.0 | 0.0 | 0.0  | 1 | 1 1 | 0.0 | 0.0 | 0.0 | 1    | 1 1 | 0.0 | 0.0 | 0.0 |  |



#### Conclusions

Integrated model used to describe the dynamics of the whole urban wastewater system and evaluate cost-effective upgrade scenarios to comply with specific water quality regulation

Several upgrade options are available to achieve the desired water quality in terms of DO and NH<sub>4</sub>

There are substantial cost differences between scenarios, with clear advantages in using in-stream aeration for DO depletion and WWTP DAF pre-treatment for NH<sub>4</sub> peaks

The integrated model proved to be a very powerful tool to quickly investigate **interactions**, **synergies** and **conflicts** in the system



# Perspectives

#### Next 2 years implementation:

- Sewer RTC
- WWTP higher inflow + RTC upgrade
- DAF demo 1500 m<sup>3</sup>/h
- River aeration one station upstream WWTP



#### THANK YOU !!!



more details on RTC Wed 10:30 session 87

lorenzobenedetti@waterways.it

