Integrated modeling of urban water systems

Lorenzo Benedetti, Ph.D.

WATERWAYS

Content

- Introduction
- Eindhoven (NL)
- Odense (DK)

System boundaries

Integration – single platform

Integrated Model

Calibrated + Validated Surrogate Sub-Models

100 nodes

10000 nodes

Separate Detailed Physical Models

Calibrated + Validated Individually

Integration – single platform (DHI WEST®)

Advantages

- One single model:
 - Mass and information flows (impact on receiving water, integrated Real Time Control)
- A very fast simplified model:
 - Long-term simulation (10y in 3h)
 - Many scenarios
 - Monte Carlo for Uncertainty/Sensitivity Analysis

The Eindhoven system

Complex combined wastewater system

Large area with severe impact on vulnerable surface water

10 municipalities

750,000 PE WRRF >200 CSOs

The Dommel River: ecological quality

The Dommel River: ecological quality

- 1. Chronic effects due to nutrients
- 2. Acute effects due to peak loads

- DO dips
- Ammonia peaks

Challenge

- Complex system subject to dynamic impacts
- Large estimated CAPEX (155 M€) with "usual" solutions (sewer volume, increased treatment)
- Data and model needed to understand how to achieve the objective at minimum cost

Modeling and monitoring

The WEST model

Results sewer RTC: storm event

Results sewer RTC: 10-year evaluation (potential ecological status, UPM FIS)

NH ₄	D	uration	of the e	vent				curr	ent		RTC NH4-DO												
		1 - 5 h	6 - 24 h	> 24 h																			
Tolerated	12	1.5	0.7	0.3	4	5	5	15.5	80.7	45.2	3	5	2	14.3	34.6	10.8							
frequency	4	2	1.2	0.5	5	5	5	20.9	62.7	24.1	4	5	1	7.9	15.6	0.8							
per year	1	2.5	1.5	0.7	5	5	5	23.9	52.2	9.9	5	5	1	4.2	8.0	0.3							
	0.2	4.5	3	1.5	5	5	2	8.3	6.8	0.2	1	2	1	0.1	0.2	0.1							
DO critical	D	uration	of the e	vent																			
		1-5h	6 - 24 h	> 24 h																			
Tolerated	12	5.5	6	7	2	5	5	6.2	38.8	30.1	2	5	5	6.1	32.9	30.7							
frequency	4	4	5.5	6	4	5	5	5.8	40.6	27.2	2	5	5	2.4	30.2	25.4							
per year	1	3	4.5	5.5	4	5	5	2.0	23.8	20.2	1	5	5	0.5	14.0	18.6							
	0.2	1.5	2	3	2	5	5	0.2	1.1	2.1	1	5	5	0.0	0.9	1.7							

River Aeration vs. (200k m³) Storage Volume

Storage Volume (200k m³) River Aeration

1	1	1	0.6	2.2	4.5
1	1	1	0.3	1.4	0.8
1	1	1	0.2	0.4	0.4
4	1	2	0.5	0.1	0.2
1	1	1	0.2	0.1	0.4
1	1	1	0.1	0.2	0.3
1	1	1	0.1	0.2	0.2
1	1	1	0 1	0.0	0 1

1	1	1	0.3	3.4	6.8
1	1	1	0.1	1.3	3.0
1	1	1	0.0	0.8	0.8
1	1	1	0.0	0.0	0.0
1	1	1	0.0	0.2	0.2
1	1	1	0.0	0.0	0.1
1	1	1	0.0	0.0	0.0
_		_	0.0	0.0	

Scenario analysis: water quality

current situation

NH ₄	Dι	uration	of the e	event		S06	6			SOC	0			S	017				S01	0		S008					S031							
		1 - 5 h	6 - 24 h	> 24 h																														
Tolerated	12	1.5	0.7	0.3	1 2 1	0.6	6.1	2.8	1 1 1	0.3	1.6	0.2	1 4	2 0.	6 18.7	6.5	1 2	2	1.4	8.1	9.5	4 5	5 2	2.6	77.4	38.6	2 5	5 5	11.7	60.2	45.6			
frequency	4	2	1.2	0.5	1 1 1	0.0	1.6	0.9	1 1 1	0.0	0.1	0.1	1 2	3 0.	0 2.4	4.3	1 1	2	0.8	1.7	3.3	5 5	5 3	1.0	65.1	40.1	5 5	5 5	12.9	54.4	36.8			
per year	1	2.5	1.5	0.7	1 2 2	0.0	0.7	0.6	1 1 1	0.0	0.0	0.1	1 2	<mark>4</mark> 0.	0 0.7	1.8	1 2	4	0.0	1.0	1.5	5 5	5 3	2.5	51.0	16.9	5 5	5 5	11.1	41.3	18.9			
	0.2	4.5	3	1.5	1 1 1	0.0	0.0	0.1	1 1 1	0.0	0.0	0.1	1 1	4 0.	0.0	0.4	1 1	1	0.0	0.0	0.1	5 5	5	4.3	2.2	0.6	1 5	4	0.0	0.7	0.3			
DO critical	Dι	uration	of the e	event																														
		1 - 5 h	6 - 24 h	> 24 h																														
Tolerated	12	5.5	6	7	1 1 1	0.6	4.8	4.0	1 4 4	2.0	16.2	22.0	1 3	<mark>3</mark> 4.	8 13.4	12.6	1 2	2	2.2	9.0	11.8	2 5	5	6.2	35.3	28.3	1 5	5 5	4.1	38.6	30.7			
frequency	4	4	5.5	6	1 2 1	0.2	2.2	0.7	1 5 4	0.2	8.7	6.0	2 5	4 2.	3 9.5	5.7	1 3	3	0.9	4.8	4.1	3 5	5	4.2	36.0	26.3	1 5	5 5	1.0	23.9	18.8			
per year	1	3	4.5	5.5	1 2 2	0.1	0.9	0.6	1 5 5	0.0	2.1	2.6	2 5	5 0.	7 5.0	3.6	1 4	5	0.2	1.3	2.5	4 5	5	1.5	20.5	19.7	1 5	5 5	0.3	9.0	11.6			
	0.2	1.5	2	3	1 1 1	0.0	0.0	0.1	1 1 1	0.0	0.0	0.0	1 1	1 0.	0.0	0.1	1 5	5	0.0	0.5	0.9	1 5	5	0.0	0.7	2.2	1 4	1 5	0.1	0.4	1.5			

Upstream

Downstream

Scenario analysis: water quality

scenario (RTC + riv.aer. + CEPT)

WWTP

NH ₄	D	uration	of the e	event			S06	6				S00	0				S01	.7				S01	.0				SO	08			sc	31	
		1-5h	6 - 24 h	> 24 h																													
Tolerated	12	1.5	0.7	0.3	1	2 1	0.6	6.1	2.8	1 1	l 1	0.3	1.6	0.2	1 4	1 2	0.4	14.8	6.8	1	2 2	1.9	7.2	9.4	1	2 2	3.2	8.0	8.1	1 1	2 0.7	6.0	6.8
frequency	4	2	1.2	0.5	1	1 1	0.0	1.6	0.9	1 1	l 1	0.0	0.1	0.1	1 :	1 3	0.0	1.4	4.6	1	1 2	0.9	1.8	3.4	1	2 1	0.4	2.1	0.7	1 1	1 0.0	1.3	0.7
per year	1	2.5	1.5	0.7	1	2 2	0.0	0.7	0.6	1 1	l 1	0.0	0.0	0.1	1 :	1 4	0.0	0.5	1.9	1	2 4	0.0	0.9	1.4	1	1 1	0.0	0.3	0.2	1 1	1 0.0	0.2	0.1
	0.2	4.5	3	1.5	1	1 1	0.0	0.0	0.1	1 1	l 1	0.0	0.0	0.1	1 :	1 4	0.0	0.0	0.3	1	1 1	0.0	0.0	0.1	1	1 1	0.0	0.0	0.1	1 1	1 0.0	0.0	0.1
DO critical	D	uration	of the e	event																													
		1-5h	6 - 24 h	> 24 h																													
Tolerated	12	5.5	6	7	1	1 1	0.3	4.2	3.9	1 1	2	0.0	0.0	9.8	1 2	2 2	0.0	8.0	8.4	1	1 2	0.0	0.0	10.5	1	1 1	0.0	0.0	0.9	1 1	2 0.0	0.1	8.0
frequency	4	4	5.5	6	1	1 1	0.1	2.0	0.7	1 1	l 1	0.0	0.0	0.0	1 :	l 1	0.0	0.0	1.4	1	1 1	0.0	0.0	0.0	1	1 1	0.0	0.0	0.0	1 1	1 0.0	0.0	0.1
per year	1	3	4.5	5.5	1	1 1	0.0	0.3	0.2	1 1	l 1	0.0	0.0	0.0	1 :	l 1	0.0	0.0	0.0	1	1 1	0.0	0.0	0.0	1	1 1	0.0	0.0	0.0	1 1	1 0.0	0.0	0.0
	0.2	1.5	2	3	1	1 1	0.0	0.0	0.0	1 1	l 1	0.0	0.0	0.0	1 :	l 1	0.0	0.0	0.0	1	1 1	0.0	0.0	0.0	1	1 1	0.0	0.0	0.0	1 1	1 0.0	0.0	0.0

Upstream

Downstream

Outcome - 'Smart measures'

- Operational control: best use of existing infrastructure (RTC)
 - Sewer-South
 - WRRF
- Requiring (limited) investments
 - Surface water aeration
 - Effluent aeration
 - Some changes at the WRRF
- Stepwise implementation: 'adaptive strategy' (5-y cycles: modeling-implementation-monitoring)

Conclusions

Problem:

Complex, dynamic, expensive

Solution:

- Integrated model that allows to handle the complexity and to make decisions based on sound science
- Significant savings compared to initial budget (now app. 40M EUR → app. 75% saving)

Odense

3rd largest city in Denmark

Ca. 192 000 inhabitants

Birth place of H.C. Andersen

Pressures

Climate change

Urban development

Water Framework Directive -

Good Environmental Status

Reduction of CSOs

Rivers in Odense

Current basis for a CSO permit

Guidelines from National Masterplan

Maximum 5 overflows / year

Design: 250 m³ / ha / year

Does not reflect the potential impacts of CSOs on the rivers!

Problem: how to prioritize investments?

- What is the actual effect of CSOs on the rivers? How do we quantify this?
- What operating strategies might be the most effective in wet weather conditions?
- What are the impacts of planned upgrades of collection systems on the WRRF?
- What about climate change?
- Where data collection would be most needed? What type of data?

Scenarios

- Scenario 1 (storage) proposed by the Regulator:
 - 9000 m³ of additional CSO storage volume at 9 locations
 - 3 upgraded pumping capacities (additional 60 l/s) at CSO structures
- Scenario 2 (pumping) proposed by the Utility:
 - 700 m³ of additional volume at one CSO location
 - 9 upgraded pumping capacities (additional 500 l/s) at CSO structures
 - 2 new pumping stations (1000 and 500 l/s)
 - a new scheme to accept higher wet-weather flows at the NV WRRF

Scenarios: NV WRRF (final) effluent loads

Scenarios: CSOs

Scenarios - river quality

UIAc salm.		Duration o	f the event	
		1-5h	6 - 24 h	> 24 h
Tolerated	12	0.065	0.025	0.018
frequency	4	0.095	0.035	0.025
per year	1	0.105	0.04	0.03
DO salm.		Duration o	f the event	
		1-5h	6 - 24 h	> 24 h
Tolerated	12	5	5.5	6
frequency	4	4.5	5	5.5
per year	1	4	4.5	5

Conclusions

Problem:

 Complex, dynamic, different opinions, only "gut feeling"

Solution:

- Integrated model that allows to handle the complexity and to make decisions based on numbers instead of "gut feeling"
- Model results are used to engage with Regulator to agree best way forward for Utility, Environment, City and Water Customers

Conclusions - general

• Evaluation criteria (regulation) change faster than service life of infrastructure (sewer 80 years, WRRF 20-30 years), adaptive planning with adequate tools is required

- Fast integrated dynamic models are required to simulate long time series of river water quality for evaluation of measures
- These are the first real applications of integrated modeling for decision making in practice.

Thank You!

LB@waterways.hr

WATERWAYS

